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Abstract. It is observed that X is an F -space if and only if C(X) is locally a
domain (i.e., C(X)P is a domain for each prime ideal P of C(X)). Consequently, X
is an F -space if and only if the primary ideals of C(X) in any given maximal ideal
in C(X) are comparable. Some of the properties of C(X), where X is an F -space,
are extended to general reduced Bézout rings. It is observed that whenever X is
an infinite connected F -space, then C(X) is a natural example of a non-Noetherian
ring without nontrivial idempotents which is locally a domain but not a domain. We
observe that the rank of a point x ∈ βX, in case finite, coincides with the Goldie
dimension of C(X)Mx and give an example to show that the Goldie dimension of
C(X)Mx is not necessarily equal to the cardinality of the set of minimal prime ideals
in Mx. Motivated by these facts and some other appropriate ones, we define the
rank of a point x ∈ βX to be the Goldie dimension of C(X)Mx . Finally, for each
cardinal a, we show that there exists a space X and a multiplicatively closed set S
in C(X) such that the Goldie dimension of S−1C(X) is a.
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1. Introduction. One can easily see that a topological space X is a P -space
if and only if each localization of C(X) at a prime ideal is a field. We observe
that the counterpart of this fact holds for F -spaces, namely, a topological space
X is an F -space if and only if C(X) is locally a domain (i.e., each C(X)P is a
domain, where P is any prime ideal in C(X)). A ring R is said to have finite
Goldie dimension or is finite Goldie dimensional, if there is a largest nonnegative
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integer n with an ideal in R which is a direct sum of n nonzero ideals. In this
case we write GdimR = n (note, if there does not exist any infinite direct sum of
ideals in R, then such an n exists, see [15, p. 209]). Since we are assuming that
all rings R in this article are commutative with 1 ̸= 0, we infer that if R is a finite
Goldie dimensional ring, then GdimR ≥ 1 (note, in case of the equality, R is called
a uniform ring). Clearly each domain is a uniform ring. Hence we may ask a more
general question, namely, what are the topological spaces X such that C(X) is a
locally finite Goldie dimensional ring? That is to say, each localization of C(X)
at prime ideals has finite Goldie dimension (resp., C(X) is a locally uniform ring
i.e., GdimC(X)P = 1 for all prime ideals P in C(X)). Locally domains have been
extensively investigated in the literature, see for example [13, Theorem 168] and
[20]. Although every Noetherian ring is clearly locally finite Goldie dimensional, it
seems (at least to us) locally finite Goldie dimensional rings have not received any
attention in the literature for general rings (i.e., not necessarily Noetherian rings,
or reduced rings, which are the rings without nonzero nilpotent elements), to date.

It is manifest that every regular ring is locally a domain and more generally it
is also easy to see that if a ring R is a finite direct product of rings, each of which is
a domain or a regular ring, then R is locally a domain too. It is also manifest that,
if R has a unique minimal prime ideal (e.g., valuation rings, i.e., the rings whose
ideals are totally ordered by inclusion), then it is a domain if and only it is locally
a domain. In [13, Theorem 168], it is shown that a Noetherian ring is locally a
domain if and only if it is a finite direct product of domains. In [14, Theorem 3.10],
a similar result is proved for rings satisfying a finiteness condition weaker than
being Noetherian. By what we have just noticed, if a Noetherian ring without
nontrivial idempotents is locally a domain it must be a domain. In [6], it was
asked whether the latter assertion remains valid if the the Noetherian assumption
is dropped. Almost a decade later in [23], a rather complicated example of a non-
Noetherian ring without nontrivial idempotents was constructed which is locally a
domain but not a domain. As a consequence of our observation about F -spaces we
give more examples of this phenomena. By a topological space X we always mean
an infinite completely regular Hausdorff space X (i.e, a Tychonoff space).

Let us give a brief outline of this article which consists of three sections. Section
1, as we have already noticed, is the introduction. In Section 2, we first characterize
topological spacesX for which C(X) is locally a domain (resp., locally uniform) and
observe some useful consequences. Motivated by this characterization, we extend it
to more general reduced rings. Section 3 is devoted to the Goldie dimension of the
rings of fractions of C(X). If x ∈ βX, we make a connection between GdimC(X)Mx

and the rank of x. Motivated by the latter connection and some other useful facts,
we naturally define the rank of a point x ∈ βX to be the Goldie dimension of
C(X)Mx , when it is not necessarily finite. An example is given to show that
the Goldie dimension of C(X)Mx and the cardinality of the set of minimal prime
ideals in Mx do not, in general, coincide. Given any cardinal number a (infinite or
finite), we show that there always exists a space X and a multiplicatively closed
set S in C(X) with GdimS−1C(X) = a. Finally, in Sections 2, 3, we suggest some
natural questions related to the topic of this article for the sake of the interested
reader. We recall that βX is the Stone-Čech compactification of the space X
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and for each prime ideal P in C(X), there exists a unique x ∈ βX such that
Ox ⊆ P ⊆ Mx, see [7, Theorem 7.15], where Mx = {f ∈ C(X) : x ∈ clβXZ(f)}
and Ox = {f ∈ C(X) : x ∈ intβXclβXZ(f)}. Finally {Mx : x ∈ βX} is the
collection of all maximal ideals of C(X) and whenever x ∈ X, then Mx and Ox

are denoted by Mx and Ox respectively. In fact if Mx = {f ∈ C(X) : f(x) = 0}
then {Mx : x ∈ X} is the set of all fixed maximal ideals of C(X) (note, an ideal
I in C(X) is called fixed if

∩
f∈I Z(f) ̸= ∅). The reader is referred to [13] or [25]

and [7] for undefined terms and notations in algebra and topology, respectively.

2. Goldie dimension of localizations. If A is an ideal in a ring R, then A is
called an essential ideal in R if A intersects every nonzero ideal of R nontrivially. A
set {It}t∈T of nonzero ideals in a ring R is said to be independent if Is∩

∑
s ̸=t∈T It =

(0), i.e,
∑

t∈T It = ⊕t∈T It. The Goldie dimension of a ring R, denoted by GdimR,
is the smallest cardinal number a such that every independent set of nonzero ideals
in R has cardinality less than or equal to a (note, the Goldie dimension of a ring
R in the literature is also called Goldie rank of R, the uniform dimension of R,
rank of R or simply the dimension of R), see [2] and [15] for various examples. The
smallest cardinal number b such that every family of pairwise disjoint nonempty
open subsets of a space X has cardinality less than or equal to b is called the
Souslin number or the cellularity of X and is denoted by S(X) or c(X), see [5] and
[26] for more details. It is interesting to know that GdimC(X) = S(X), see [1]. In
[1] it is also observed that |X| < ∞ if and only if GdimC(X) < ∞.

In what follows we observe some useful facts for F -spaces. The second part of
the next result is also observed in [18, the comment preceding the proof of Theorem
1].

Lemma 2.1. Let P be a maximal ideal in a ring R and ϕ : R → RP be the
natural homomorphism. If P is the unique maximal ideal containing I = Kerϕ,
then R/I ∼= RP . In particular, C(X)/Ox ∼= C(X)Mx .

Proof. We just note that R/I = (R/I)P/I
∼= RP /IRP = RP , see [25, Example

5.44] and [7, 7.12(b)]. 2

Let us also cite the next result from [15, Theorems 11.43 and 11.46].

Theorem 2.2. The following statements are equivalent for a reduced ring R.
(a). GdimR = n.
(b). R has exactly n minimal prime ideals.
(c). The classical ring of quotients of R is the direct product of n fields.

We also recall the following result from [20, Proposition 2.1].

Proposition 2.3. The following statements are equivalent.

(1) Every principal ideal of R is flat.
(2) RM is a domain for all maximal ideals M of R.
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(3) R is reduced and every maximal ideal of R contains only one minimal prime
ideal of R.

The statement in part (3) of the following immediate corollary first appeared
in [19], see the comment following Theorem 2.1 in [8].

Corollary 2.4. The following statements are equivalent for a ring R.
(1) RP is a domain for each prime ideal P of R.
(2) RM is a domain for each maximal ideal M of R.
(3) R is reduced and every prime ideal of R contains a unique minimal prime

ideal.

The next proposition is a part of our main result.

Proposition 2.5. The following statements are equivalent.
(a) X is an F -space.
(b) C(X) is locally a domain ring.
(c) C(X)M is a domain for every maximal ideal M of C(X).
(d) C(X) is locally uniform.

Proof. By the previous results (a)⇒(b)⇒(c)⇒(d) is trivial.
(d)⇒(a). Although by using Theorem 2.2 and Corollary 2.4, we can easily see

that C(X) is locally uniform if and only if X is an F -space, we prefer the trivial
proof which follows. We first claim that every reduced ring R with GdimR = 1
is, in fact, a domain and this completes the proof, by Lemma 2.1. Let ab = 0 for
a ̸= 0 ̸= b in R and get a contradiction. Take any x ∈ (a)

∩
(b), hence x2 = 0,

which implies that x = 0, that is to say, (a)
∩
(b) = 0. Consequently GdimR ≥ 2,

which is the desired contradiction. 2

We note that if X is any infinite space, then there is a prime ideal P in C∗(X)
such that C∗(X)P is never a field (note, an infinite compact space is never a P -
space, see [7, 4K]). In contrast to the latter fact, and by using the fact that X is
an F -space if and only if βX is so, we immediately have the following corollary.

Corollary 2.6. The following statements are equivalent.
(a) X is an F -space.
(b) C∗(X)P is a domain for each prime (resp. maximal) ideal in C∗(X).
(c) C∗(X)P is a uniform ring for each prime (resp. maximal) ideal in C∗(X).

Considering part (d) in the preceding proposition, the characterization of spaces
X such that C(X) is locally finite Goldie dimensional is naturally important. We
will deal briefly with these spaces in the next section.

It is worthwhile to record the following fact.

Example 2.7. In the last part of the proof of the previous proposition, we have
already observed that if for each prime ideal P in a reduced ring R, GdimRP = 1,
then R is locally a domain. We should emphasize here that there are commutative
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rings R such that GdimRP = 1 for all prime ideals P of R (i.e., are locally uniform),
but no RP is a domain. To see this, let p be any prime number, then consider the
ring R = Z

(pr) , where r ≥ 2 is an integer (note, R has only r − 1 nonzero ideals

and they form a chain and it has only one prime ideal which is P = (p)
(pr) ). Clearly

R = RP and GdimR = 1, but R is not a domain. It is also noteworthy to mention
that if T is the ring which is the product of n copies of R, where n is any positive
integer, then GdimT = n and GdimTP = 1 for all prime ideals P of T .

Using Proposition 2.5, along with the fact that the localization of a Bézout
ring is Bézout and applying [13, Theorem 63], we immediately have the interesting
result which follows, see also the comment following Corollary 2.5 in [11].

Corollary 2.8. A topological spaceX is an F -space if and only if the localization
of C(X) (resp. C∗(X)) at any prime ideal of C(X) (resp. C∗(X)) is a valuation
domain.

Using [7, Theorem 7.13] one can slightly strengthen [7, Theorem 7.15] as follows.

Remark 2.9. Every primary ideal Q in C(X) contains Ox for a unique x ∈ βX,
and Mx is the unique maximal ideal containing Q.

The above two results together with [25, Theorem 5.37], immediately yield the
following stronger property for F -spaces with contrast to the property that the
prime ideals in a given maximal ideal in C(X), where X is an F -space, form a
chain, see [7, Theorem 14.25(2)].

Corollary 2.10. A topological space X is an F -space if and only if the primary
ideals in any given maximal ideal in C(X) (resp. C∗(X) ) form a chain.

Using Propositions 2.3, 2.5, Corollary 2.4 and [24, Corollary 3.49], the next
corollary is now immediate.

Corollary 2.11. A topological space X is an F -space if and only if every ideal
in C(X) is flat.

With regard to the existence of non-Noetherian rings without nontrivial idem-
potents which are locally domains, but not domains, see [23] for such a phenomena.
To give more examples, let us recall the simple and well-known fact that X is a
connected space if and only if C(X) has no nontrivial idempotents, see [7, 1B].
Let us also emphasize that if X is any space, then C(X) is never Noetherian or a
domain, see [2, Remark 2.12]. Consequently, whenever X is a connected F -space
(e.g., X = βR+ \ R+), see [7, p. 211], then by Proposition 2.5, C(X) provides us
with the natural examples of these phenomena.

So far we have noticed that locally domains and C(X), where X is an F -space,
enjoy some common properties. Therefore in order to present our last result in
this section, which is in fact, an algebraic characterization of F -spaces, let us first
introduce some notations in general rings, similar to their counterparts in C(X).
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Let S be a multiplicatively closed set in R and put OS = {r ∈ R : rs =
0 for some s ∈ S}, hence OS = kerφ, where φ : R → S−1R is the natural ring
homomorphism (i.e., φ(r) = r

1 ). Clearly OS is an ideal of R and it is prime
(resp. semiprime) in R if and only if S−1R is a domain (resp. a reduced ring). If
S = R \P , where P is a prime ideal contained in R, then similar to the convention
S−1R = RP , we may also put OS = OP and it is contained in every prime ideal
which is in P . Clearly, in the latter case if R is reduced, then P is a minimal prime
ideal if and only if OS = P , see [12, Corollary 2.2]. As we have already noticed for
an element x ∈ βX, we have f ∈ Ox if and only if fg = 0 for some g /∈ Mx, that is
to say, Ox = OMx , by our notation. Clearly, by Proposition 2.5 and [7, Theorem
14.25], X is an F -space if and only if OP is prime for each prime ideal P of C(X).

We are now ready to present our main result in this section (which is in fact
the algebraic characterization of F -spaces) and although some of its statements are
already mentioned above for reduced rings, we repeat them for the record.

Theorem 2.12. Let R be a reduced Bézout ring. The following statements are
equivalent.

(1) OP is a prime ideal for each prime ideal P of R (e.g., R = C(X), where X is
an F -space).

(2) R is locally a domain.
(3) Every prime ideal P of R contains a unique minimal prime ideal Q such that

OP = OQ = Q.
(4) RM is a domain for each maximal ideal M of R.
(5) Every maximal ideal M of R contains a unique minimal prime ideal P with

OM = OP = P .
(6) RP is a valuation domain for each prime ideal P of R.
(7) Primary ideals contained in each prime ideal of R form a chain.
(8) R is a locally uniform ring.
(9) R is a locally finite Goldie dimensional ring and the set of zero divisors of

R
OP

is an ideal.
(10) Every ideal of R is flat.

Proof. (1)⇒(2) It is evident by the precedent comment.
(2)⇒(3). It is manifest that every prime ideal of R contains a unique minimal
prime ideal. Hence by the preceding comment, it suffices to show that OP is prime
(note, OP is in every prime ideal which is in P ). Clearly R

OP
is embeddable in RP

and we are done.
(3)⇒(4)⇒(5). It is evident by Proposition 2.3, Corollary 2.4 and the comment
preceding the theorem.
(5)⇒(6). It is clear by Corollary 2.4 and [13, Theorem 63].
(6)⇒(7). It is evident by [25, Theorem 5.37(iv)].
(7)⇒(8). We first note that each prime ideal contains a unique minimal prime
ideal. Thus for each prime ideal P of R, RP contains a unique minimal prime ideal
which must be zero, for RP is reduced, hence RP is a domain and we are done
(This is also a consequence of Proposition 2.3 and Corollary 2.4).
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(8)⇒(9). As we observed in the proof of (d)⇒(a) in Proposition 2.5, every reduced
ring whose Goldie dimension is 1 is a domain. Thus R is locally a domain and it
remains to be shown that the set of zero divisors of R

OP
is an ideal for each prime

ideal P of R. But this set actually consists of the zero element, for in fact OP

is a prime ideal (note, the latter quotient ring is embeddable in RP ) and we are
through.

(9)⇒(10). We first show that R is locally domain. To see this, for each prime
ideal P of R we observe that RP has only finitely many minimal prime ideals.
Hence we may assume P has only n minimal prime ideals, say {P1, P2, ..., Pn}.
Clearly n = GdimRP , by Theorem 2.2. Since R

OP
is reduced, we infer that its set

of zero divisors is the union of its minimal prime ideals, by [13, P 63, Example
13]. Since R

OP
is a subring of RP , we infer that each minimal prime ideal of R

OP

is a contraction of a minimal prime ideal of RP , by [13, P 41, Example 1] (note,
in fact in [13, P 41, Example 1] it is only claimed that if R ⊆ T are rings and Q
is a minimal prime ideal of R, then Q = R ∩ Q1 for some prime ideal Q1 in T ).
But one can see easily that Q1 can be assumed to be a minimal prime ideal in T .
To see this, let Q2 ⊆ Q1 be a minimal prime ideal in T , hence Q2 ∩ R is a prime
ideal in R and since Q2 ∩ R ⊆ Q, we infer that Q2 ∩ R = Q, and we are done.
Consequently, R

OP
has exactly n minimal prime ideals, which are P1

OP
, P2

OP
, . . . , Pn

OP
.

Since R
OP

is a reduced ring, we infer that its set of zero divisors, say Z
OP

, is the

union of the above minimal prime ideals. But by our assumption, Z
OP

is an ideal,
hence by the prime avoidance lemma, see [25, Theorem 3.61] or [13, Theorem 81],
Z
OP

is contained in one of the minimal prime ideals of R
OP

. Thus the number of the

minimal prime ideals of R
OP

reduces to one, i.e., RP has only one minimal prime
ideal which causes RP to become a domain (note, RP is a reduced ring) and we
are done. Now by invoking Theorem 2.3, we infer that each principal ideal and
therefore each finitely generated ideal of R is flat. Finally, by [24, Corollary 3.49],
each ideal of R is flat and we are through.

(10)⇒(1). By Proposition 2.3 and Corollary 2.4, R is locally a domain, hence OP

is a prime ideal for each prime ideal P of R (note, R
OP

is embeddable in RP ) and
this completes the proof. 2

In the proof of (9)⇒(10), we have actually shown that when R is reduced and
GdimRP is finite, then Gdim R

OP
= GdimRP . Motivated by this and the fact that

the operation of extension of ideals from R to S−1R acts naturally on the finite
sum of ideals and also on the finite intersection of ideals in R, see [25, Lemma 5.31],
we record the following general result (which seems to have been overlooked in the
literature), even when the ring is not necessarily reduced and the dimensions are
also not necessarily finite.

Proposition 2.13. Let S be a multiplicatively closed set in a ring R. Then
Gdim R

OS
= GdimS−1R.

Finally, our investigation in this section leads us to the following four questions.
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Questions.

1. What are the Noetherian rings R such that there exists an integer n with
GdimRP ≤ n for each prime ideal P of R (or equivalently, Gdim R

OP
≤ n

for all prime ideals P of R)? Noetherian rings which are direct product of
domains have this property. More generally, every Noetherian reduced ring
has this property.

2. Characterize general rings which are locally finite Goldie dimensional (equiv-
alently, for each prime ideal P of R, R

OP
has finite Goldie dimension).

3. Characterize rings R in the second question with a finite upper bound on
GdimRP for all prime ideals P of R (note, any finite direct product of
C(X), where X is an infinite F -space, has this property. Also any reduced
finite Goldie dimensional ring has this property too and we should emphasize
that the former ring has infinite Goldie dimension). This question can also
be generalized by replacing finite upper bound with a fixed infinite upper
bound, for example ℵ0 or ℵ1 (equivalently, characterize rings R such that
Gdim R

OP
≤ λ for all prime ideals P of R, where λ is a fixed cardinal number).

In particular, we are interested in those rings for which this infinite upper
bound is attained (i.e., GdimRP is equal to this upper bound for some prime
ideal P of R).

4. Motivated by Proposition 2.13, it is natural to ask for the characterization of
all the ring extensions R ⊆ T such that GdimR = GdimT . By Proposition
2.13, it is clear that whenever T is an overring of R (i.e., R ⊆ T ⊆ Q(R),
where Q(R) is the total (classical) quotient ring of R, i.e., Q(R) = S−1R,
where S is the set of all non-zero divisors of R), then GdimR = GdimT =
GdimQ(R).

3. The rank of a point vs. Goldie dimension. For each x ∈ βX, rk(x)
denotes the number of minimal prime ideals contained in Mx, if the set of all such
minimal prime ideals is finite, and rk(x) = ∞ otherwise. The number rk(x) is
called the rank of x. The notion of “rank of a point” is first introduced and studied
in [9]. The following result first appears in [9] for compact Hausdorff spaces and
later in [16] for completely regular Hausdorff spaces.

Theorem 3.1. Let X be a topological space. A point x ∈ X has finite rank n ≥ 2
if and only if there is a collection of n pairwise disjoint cozerosets such that x is in
the closure of each of these cozerosets and there is no larger such collection.

Using Theorem 2.2, we observe trivially that whenever rk(x) is finite, it is in
fact the Goldie dimension of the reduced ring C(X)Mx . Although, by what we
have already observed, the first part of the next theorem follows accordingly, since
it immediately yields Theorem 3.1, we present a direct proof in the context of C(X)
for the sake of completeness. Before doing this, the following definition and the
next lemma are needed.

Definition. A collection F = {Ci : i ∈ I} of nonempty cozerosets in a space X
is said to have a disjoint refinement if there exists a collection of disjoint nonempty
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cozerosets, say E = {Bi : i ∈ I}, with Bi ⊆ Ci for each i ∈ I and E is called a
disjoint refinement of F .

Lemma 3.2. Let x ∈ X and F = {X \ Z(fi) : i = 1, 2, ..., n} be a collection of
nonempty cozerosets whose closures contain x and fifj ∈ OMx for all i ̸= j. Then
F has a disjoint refinement with the latter properties.

Proof. By our assumption fi /∈ Ox for all i and for all j ̸= i, there must exists
gij /∈ Mx with fifjgij=0. Now by putting g =

∏n
i,j=1 gij , we infer that g /∈ Mx and

hence gfi /∈ Ox,∀i = 1, 2, . . . , n (note, otherwise fi ∈ Ox which is absurd, for by [7,
7.15], no prime ideal containing Ox can contain g, for g /∈ Mx, hence fi is in every
prime ideal containing Ox and we are done). This implies that x ∈ clX(X \Z(gfi))
and (X \ Z(gfi)) ∩ (X \ Z(gfj)) = ∅. Consequently, {X \ Z(gfi) : i = 1, 2, ..., n}
is a collection of n pairwise disjoint cozerosets with x in their closures (note, it is
trivial to see that gfigfj = 0 ∈ OMx and X \Z(gfi) ⊆ X \Z(fi)). This completes
the proof. 2

Theorem 3.3. If x ∈ βX has a finite rank, then GdimC(X)Mx = rk(x). More-
over, the latter equality yields Theorem 3.1.

Proof. Let rk(x) = n and {P1, P2, . . . , Pn} be the set of all minimal prime
ideals contained in Mx. Since

∩
j ̸=i Pj * Pi, there exists fi ∈

∩
j ̸=i Pj \ Pi. Since

Ox =
∩n

i=1 Pi, fi /∈ Ox, ∀i = 1, 2, . . . , n. This means that fi
1 ̸= 0, ∀i = 1, 2, . . . , n,

by Lemma 2.1. But fifj ∈ Ox =
∩n

i=1 Pi, which means that {( fi1 ) : 1 ≤ i ≤
n} is an independent set of nonzero ideals of C(X)Mx , by Lemma 2.1, hence
GdimC(X)Mx ≥ n. Now suppose that B = {B1, B2, . . . , Bn+1} is an independent
set of nonzero ideals of C(X)Mx and take 0 ̸= fi

1 ∈ Bi, i = 1, 2, . . . , n + 1. By
Lemma 2.1, fi /∈ Ox, i = 1, 2, . . . , n + 1 and hence fi is not contained in some
minimal prime ideal inMx. Without loss of generality, we may assume that fi /∈ Pi.
One of the Pi’s does not contain at least two of the fj ’s, let fi, fj /∈ Pi. But by the

independence of the set B, we have fi
1

fj
1 = 0 which means that fifj ∈ Ox ⊆ Pi, a

contradiction. Therefore GdimC(X)Mx = n.
Now to prove Theorem 3.1, let us assume that x ∈ X and rk(x) = n. Hence

there is an independent set {B1, . . . , Bn} of nonzero ideals in C(X)Mx and n is the
largest integer with this property. Without loss of generality, we may take each
Bi = ( fi1 ) to be principal, then we have fi /∈ Ox, 1 ≤ i ≤ n and fifj ∈ Ox =
OMx , ∀ i ̸= j, by Lemma 2.1. Now fi /∈ Ox implies that x ∈ clX(X \ Z(fi)).
Consequently, by the previous lemma, the collection {X \ Z(fi) : i = 1, 2, ...., n}
has a disjoint refinement with x in the closure of each member of this disjoint
refinement . Therefore it remains to be shown that there is no larger collection
of disjoint cozerosets whose closures contain x. This is also evident, for if there is
such a collection, then there is an independent collection of more than n principal
ideals, say {(f1), (f2), . . . , (fn+1)} in Mx such that no fi is in Ox. Hence we have a

collection {( f11 ), (
f2
1 ), . . . , (

fn+1

1 )} of n+ 1 independent nonzero ideals in C(X)Mx ,
that is to say that GdimC(X)Mx is greater than n, which is absurd by the first part,
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and we are done. Conversely, similarly to what we have just shown, the existence
of a largest integer n with a family consisting of n pairwise disjoint cozerosets such
that x is in their closures, implies that the Goldie dimension of the ring C(X)Mx

is n, and we are through by the first part of the theorem. 2

Let x ∈ X, then X is said to have local Souslin property at x if whenever
F = {X \ Z(fi) : i ∈ I} is a collection of cozerosets with x in their closures and
fifj ∈ OMx , it has a disjoint refinement with the former property. We have already
noticed, by Lemma 3.2 and Theorem 3.3, that if x ∈ X has finite rank, then X
has local Souslin property at x. Motivated by the latter results, for any x ∈ X,
the smallest cardinal number a such that whenever F = {X \ Z(fi) : i ∈ I} is
a collection of cozerosets in X, with x in their closures and fifj ∈ OMx for all
i ̸= j, then |I| ≤ a, is called the local cellularity at x and is denoted by cl(x). If
rk(x) is finite, we have already seen that rk(x) = cl(x) = GdimC(X)Mx . In what
follows we prove a more general result, which shows that the Goldie dimension of
a localization of C(X) may be an infinite cardinal. Although, its proof is more or
less the same as the above proof, we present it for the sake of the reader. Before
giving the result, let us inform the reader that whenever x ∈ βX, then the previous
result and the one which follows, pave the way for us, to define the rank of the
point x (whether finite or infinite) to be the Goldie dimension of C(X)Mx , that is
to say, we define rk(x) = GdimC(X)Mx .

Proposition 3.4. Let X be a topological space. Then for any x ∈ X we have
GdimC(X)Mx = cl(x).

Proof. Let C = {X \ Z(fi) : i ∈ I} be a collection of cozerosets with the
property that x ∈ clX(X \ Z(fi)) for all i ∈ I and fifj ∈ OMx

∀i ̸= j in I.

Hence fi /∈ Ox, ∀i ∈ I. Consequently {( fi1 ) : i ∈ I} is an independent set of
nonzero ideals in C(X)Mx , see Lemma 2.1, and the comment preceding Theorem
2.12. Hence GdimC(X)Mx ≥ |I|, which means that GdimC(x)Mx ≥ cl(x). Now let
{( fi1 ) : i ∈ I} be an independent collection of nonzero principal ideals in C(X)Mx .
To prove that cl(x) ≥ GdimC(X)Mx , it suffices to show that cl(x) ≥ |I|. Since
the previous collection is independent, we immediately infer that for all i, j ∈ I
we have fi /∈ Ox and fifj ∈ Ox = OMx (note, again we are using Lemma 2.1,
and the comment preceding Theorem 2.12). Hence {X \ Z(fi) : i ∈ I} is a
collection of cozerosets with the property that x ∈ clX(X \ Z(fi)) for each i and
fifj ∈ Ox = OMx . Now by the definition of cl(x) in the precedent comment, we
infer that |I| ≤ cl(x) and this completes the proof. 2

The following result which shows that the local cellularity at non-isolated points
in a metric space is at least uncountable, is needed. We first recall the well-known
fact that for each infinite countable set E, there exists F ⊆ P(E) consisting of
infinite subsets of E such that |F| = 2ℵ0 and A∩B is a finite set for all A,B ∈ F ,
see [7, 6Q, 6S], see also [2, Remark 2.7].
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Proposition 3.5. Suppose that X is a first countable space whose closed sets
are zerosets (e.g., metric spaces) and let x ∈ X be a non-isolated point. Then
GdimC(X)Mx

≥ 2ℵ0 . In particular, if X is a connected metric space, then
GdimC(X)M ≥ 2ℵ0 for every fixed maximal ideal M of C(X).

Proof. Since x has a countable base, we may consider Bx = {Gn : n ∈ N} as a
base at x with G1 % G2 ⊇ G2 % · · · % Gn ⊇ Gn · · · . Now Let Hn = Gn \Gn+1 for
each n ∈ N and put E = {Hn : n ∈ N}. Consequently, by the preceding comment,
there exists F ⊆ P(E) consisting of infinite subsets of E such that |F| = 2ℵ0 and
A ∩ B is a finite set for all A,B ∈ F . Now for each A ∈ F , we consider the set
GA =

∪
A and put C = {GA : A ∈ F}. It is manifest that |C| = 2ℵ0 . By our

hypothesis, we infer that each GA is a cozeroset, say X \ GA = Z(fA). By our
definition of Hn’s, it is easy to see that x ∈ clXGA. We claim that Z(fA) ∪ Z(fB)
contains a neighborhood of x, for all A,B ∈ F , hence fAfB ∈ Ox. To see this, we
just observe that GA ∩ GB is in fact either empty or a finite union of Hn’s. Hence
by our definition of Hn’s, there exists a neighborhood, say Gx of x such that Gx

does not intersect GA ∩ GB. Accordingly, Gx ⊆ Z(fA) ∪ Z(fB), i.e., fAfB ∈ Ox.
Finally by invoking Proposition 3.4, we are done. 2

The following remark shows that the rank of a point in a topological space is
not necessarily equal to the cardinality of the set of minimal prime ideals in the
corresponding fixed maximal ideal.

Remark 3.6. Let X be an infinite countable discrete space and X∗ = X ∪ {y}
be its one-point compactification. Then GdimC(X∗)Mx = 1 for all x ∈ X and
GdimC(X∗)My = 2ℵ0 (note, GdimC(X∗)My ≥ 2ℵ0 , by the above proposition). By
[7, 14G(5)], we observe that the cardinality of the set of minimal prime ideals in
My is 2c (note, for each x ∈ X, Mx is a minimal prime ideal). Moreover if X
is any infinite discrete space (not necessarily countable) and X∗ = X ∪ {y} is its

one-point compactification, then GdimC(X∗)Mx = GdimC(X∗)
Ox

= 1 for all x ∈ X

and GdimC(X∗)My = GdimC(X∗)
Oy

≥ |X|. To see this, we should observe that Oy

is the socle of C(X∗) (i.e., Oy = CF (X
∗)) and |X| = GdimC(X) = GdimC(X∗),

see [2, Theorem 2.5(3)], [1, Theorem 2.2] and Lemma 2.1.

Concerning the comment which follows Corollary 2.6, we must admit that part
(d) and part (9) in Proposition 2.5 and Theorem 2.12, respectively, might lead us
on, to guess that “X is an F -space if and only if C(X) is locally finite Goldie
dimensional”. But this is not always true and in fact there are many examples of
spaces X such that C(X) is locally finite Goldie dimensional, but not necessarily
locally a domain. First we recall that a space X is an FMP -space at p ∈ βX if
rk(p) is finite and X is called an FMP -space if it is an FMP -space at every point
of βX. Hence by Theorem 2.2, X is an FMP -space if and only if every localization
of C(X) at prime ideals has finite Goldie dimension. Clearly every F -space is an
FMP -space and for examples of FMP -spaces which are not necessarily F -spaces,
see [11, Example 2.9] and [22, Proposition 4.2]. Note that [11, Example 2.9] gives a



150 S. Afrooz, F. Azarpanah and O.A.S. Karamzadeh

compact SV -space (a space X such that C(X)
P is a valuation domain for each prime

ideal of C(X)) which is not an F -space. We also remind the reader that every SV -
space is an FMP -space, see [10, Note added in proof], and [17, Theorem 1.1(2)].
We should also bring to the attention of the reader that [9, Corollary 4.2.1] and
[17, Theorem 1.1(2)] in fact show that whenever X is an SV -space, then there is an
integer n such that GdimC(X)P ≤ n for all prime ideals in C(X). Consequently,
C(X) in this case is a partial answer to the third question in the preceding section.
Motivated by this and by what we have already observed earlier, we present the
next two questions.

Questions.

1. What are the topological spaces X such that GdimC(X)P ≤ λ for all prime
ideals P in C(X), where λ is a given cardinal number (equivalently, for each

prime ideal P in C(X), GdimC(X)
OP

≤ λ)? For example, let λ ∈ N or λ = ℵ0

or = ℵ1. In particular, when λ is infinite we are interested in topological
spaces X for which this λ is attained (i.e., there exists a prime ideal P in

C(X) with GdimC(X)P = λ = GdimC(X)
OP

).
2. What are the topological spaces X such that for each x ∈ X we have rk(x) =

GdimC(X)Mx = |Min(C(X)Mx)|, where for any ring R, Min(R) is the set of
all minimal prime ideals of R?

For each subset A of βX put SA = C(X) \
∪

x∈A Mx. Clearly SA is a multipli-
catively closed set which is saturated (i.e., fg ∈ SA if and only if f ∈ SA and
g ∈ SA). In light of the Gelfand-Kolmogoroff theorem, see [7, p.102], one can
easily see that SA = {g ∈ C(X) : A ∩ clβXZ(g) = ∅}. Let us also recall that
for each subset A of βX, MA = {f ∈ C(X) : A ⊆ clβXZ(f)} =

∩
x∈A Mx and

OA = {f ∈ C(X) : A ⊆ intβXclβXZ(f)} =
∩

x∈A Ox. Finally, let φA : C(X) →
S−1C(X) be the natural ring homomorphism (i.e., φ(f) = f

1 ). The next lemma,
which is now in order, is also needed.

Lemma 3.7. Let A be a closed subset of βX. Then OA = OSA
= kerφA.

Proof. Let f ∈ kerφA, i.e.,
f
1 = 0, hence there exists g ∈ SA such that fg = 0. By

what we have already observed above, A∩clβXZ(g) = ∅, hence A ⊆ βX \clβXZ(g).
But Z(f) ∪ Z(g) = X implies that clβXZ(f) ∪ clβXZ(g) = βX, see [7, Theorem
6.5(IV)] which, in turn, implies that βX \ clβXZ(g) ⊆ intβXclβXZ(f). Therefore
A ⊆ intβXclβXZ(f), i.e., f ∈ OA. Conversely, let f ∈ OA. We first recall that, in
[3] and [4], it is shown that for all closed subsets A of βX, OA are exactly the pure
ideals of C(X) (note that an ideal I in a ring R is said to be pure if for every x ∈ I,
there is y ∈ I such that x = xy, see also [24]). Since OA is a pure ideal, there exists
g ∈ OA such that f = fg or f(1−g) = 0. But clβXZ(g)∩ clβXZ(1−g) = ∅, see [7,
Theorem 6.5(III)], implies that A ⊆ clβXZ(g) ⊆ βX \ clβXZ(1− g) and therefore

A ∩ clβXZ(1− g) = ∅, i.e., 1− g ∈ SA, so
f
1 = 0. 2

The next example shows that for each n ∈ N, there exist a topological space X
and a multiplicatively closed set S such that GdimS−1C(X) = n.
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Example 3.8. Let A = {x1, x2, . . . , xn} be a set of F -points in the space X and
S = C(X)\

∪
x∈A Ox. Since Ox, for each x ∈ A, is a minimal prime ideal, S−1C(X)

has exactly n minimal prime ideals and hence by Theorem 2.2 and Proposition

2.13, GdimS−1C(X) = GdimC(X)
OS

= n. We may also select n minimal prime

ideals P1, . . . , Pn in any reduced ring R and consider S = R \
∪n

i=1 Pi and again by
Theorem 2.2 and Proposition 2.13, we have GdimS−1R = Gdim R

OS
= n.

Let us recall that if A ⊆ X, then OA = OA = {f ∈ C(X) : A ⊆ intXZ(f)}
and SA = C(X) \

∪
x∈A Mx. Let us also recall that if GdimR = λ and λ is not an

inaccessible cardinal, then there is an independent collection of nonzero ideals in
R whose cardinal is λ (i.e., GdimR = λ is attained), see [2, Remark 2.10]. We are
now ready for the next result in this section.

Theorem 3.9. Let {Gi : i ∈ I} be a collection of disjoint open sets in X and for
each i ∈ I, let xi ∈ Gi be such that X has local Souslin property at xi. Suppose
that A = {xi : i ∈ I} is a closed set in βX and for each i ∈ I, GdimC(X)Mxi

is
attained (e.g., if A ⊆ X is just a finite set of points whose ranks are finite), then
GdimS−1

A C(X) =
∑

i∈I GdimC(X)Mxi
=

∑
i∈I cl(xi).

Proof. Let GdimC(X)Mxi
= λi for all i ∈ I and {( fij1 ) : j ∈ Ji}, where |Ji| ≤ λi,

be an independent collection of nonzero ideals in C(X)Mxi
(note, with no loss of

generality, we may suppose that Ji ∩ Jk = ∅, for all i ̸= k). For each i ∈ I we
may also consider a cozeroset X \ Z(gi) with xi ∈ X \ Z(gi) ⊆ Gi and by our
assumption, these cozerosets are mutually disjoint. Clearly h

1 ̸= 0 and h
1
k
1 = 0

in C(X)Mxi
imply that h /∈ Oxi and hk ∈ Oxi = OMxi

, by Lemma 2.1 and the
comment preceding Theorem 2.12. Hence the collection {X \ Z(fij) : j ∈ Ji} has
the property that xi ∈ clX(X \ Z(fij)) and fijfik ∈ OMxi

, for j ̸= k. Since X
has local Souslin property at each xi, we may, without loss of generality, assume
that the latter collection is, in fact, a collection of disjoint cozerosets for each
i ∈ I. Now consider the collection {( gifij1 ) : i ∈ I, j ∈

∪
i∈I Ji = J} of ideals in

S−1
A C(X). We claim that this collection is independent. To this end, we first note

that
gifij
1 ̸= 0 for all i ∈ I, j ∈ J , for otherwise by Lemma 3.7, gifij ∈ OA = OA,

i.e., A ⊆ intXZ(gifij), but xi ∈ A, xi ∈ clX(X \ Z(gifij)), which is absurd. It is
also easy to see that for all i1, i2 ∈ I, with i1 ̸= i2, gi1gi2 = 0 and for each j1, j2 ∈ J ,
with j1 ̸= j2, fij1fij2 = 0. Consequently, the product of any two ideals in the above
collection is zero which is sufficient to make the collection independent (note, C(X)
is reduced). Clearly, the cardinality of this collection is at least

∑
i∈I |Ji|, hence

GdimS−1
A C(X) ≥

∑
i∈I λi = λ (note, |Ji| = λi can occur). Finally we claim that

the inequality, GdimS−1
A C(X) ≥ λ, gives us the equality. To see this, it is sufficient

to prove that whenever {( ft1 ) : t ∈ T} is an independent collection of nonzero ideals

in S−1
A C(X) with |T | > λ, it leads us to a contradiction. Since ft

1 ̸= 0, for all t ∈ T ,
we infer that ft /∈ OA for all t ∈ T , that is to say, A * intXZ(ft). Thus for each
t ∈ T there must exist i ∈ I with xi /∈ intXZ(ft), hence xi ∈ clX(X \ Z(ft).
Now for each i ∈ I, put Ai = {t ∈ T : xi ∈ clX(X \ Z(ft))} and it is evident
that T =

∪
i∈I Ai. Since we have assumed that |T | > λ, there must exists i ∈ I
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such that |Ai| > λi. In view of the fact that
ft1
1

ft2
1 = 0 for t1, t2 ∈ Ai, t1 ̸= t2,

we infer that ft1ft2 ∈ OA, by Lemma 3.7, that is to say that A ⊆ intXZ(ft1ft2),
hence xi ∈ intXZ(ft1ft2), i.e., ft1ft2 ∈ Oxi = OMxi

. It is also manifest that
xi ∈ clX(X \ Z(ft) for all t ∈ Ai. Consequently by the definition of the local
cellularity at xi, we have cl(xi) ≥ |Ai| > λi. But cl(xi) = GdimC(X)Mxi

= λi, by
Theorem 3.4, which is the desired contradiction. 2

The first part of Example 3.8, is now a trivial consequence of the following
immediate corollary.

Corollary 3.10. Let A = {x1, x2, . . . , xk} be a subset of a space X and each xi

has a finite rank. Then GdimS−1
A C(X) =

∑k
n=1 GdimC(X)Mxn

=
∑k

n=1 rk(xn).

The following examples show that for each cardinal number λ, there exist a
topological space X and a multiplicatively closed set S with GdimS−1C(X) = λ.
The first example is the generalization of the fact that GdimC(X) = c(X).

Example 3.11. Let f ∈ C(X) and S = {fn : n = 0, 1, . . . }. We show that
GdimS−1C(X) = c(X \ Z(f)) = GdimC(X \ Z(f)). Suppose that {Bi : i ∈ I} is
an independent set of nonzero ideals of S−1C(X) and take 0 ̸= fi

1 ∈ Bi for each
i ∈ I. Hence fif ̸= 0 which means that (X \Z(f))∩ (X \Z(fi)) ̸= ∅. On the other

hand, fi
1

fj
1 = 0 implies that ffifj = 0, ∀i ̸= j, i.e., [(X \ Z(f)) ∩ (X \ Z(fi))] ∩

[(X \Z(f))∩(X \Z(fj))] = ∅. Therefore the set {(X \Z(f))∩(X \Z(fi)) : i ∈ I} is
a collection of mutually disjoint nonempty open subsets of X \ Z(f) which means
that GdimS−1C(X) ≤ c(X \ Z(f)). Now let {Gi : i ∈ I} be a collection of
pairwise disjoint nonempty open sets in X \ Z(f). Since Gi’s are also open in
X, we may define fi ∈ C(X) such that fi(X \ Gi) = {0} and fi(xi) = 1 for
some xi ∈ Gi. Since xi ∈ X \ Z(f), clearly fif ̸= 0, so fi

1 ̸= 0, ∀i ∈ I. On

the other hand, fifj = 0 implies that fi
1

fj
1 = 0, ∀i ̸= j. Therefore the collection

{( fi1 ) : i ∈ I} is an independent set of nonzero ideals in S−1C(X). This means that
GdimS−1C(X) ≥ c(X \ Z(f)), hence GdimS−1C(X) = c(X \ Z(f)). The second
equality c(X \ Z(f)) = GdimC(X \ Z(f)) is proved in [1].

Example 3.12. Let G be an open subset of X and T = C(X) \ ∪x∈GMx. Then
GdimT−1C(X) = c(G) = GdimC(G). Clearly T = {g ∈ C(X) : G ∩ Z(g) = ∅}
and f

1 = 0 if and only if f ∈ OG. Since G is open, clearly OG = MG. Suppose
that {Bi : i ∈ I} is an independent set of nonzero ideals in T−1C(X) and take
0 ̸= fi

1 ∈ Bi, ∀i ∈ I. Hence fi /∈ OG = MG which means that G∩ (X \Z(fi)) ̸= ∅,
∀i ∈ I. On the other hand fi

1
fj
1 = 0 implies that fifj ∈ OG = MG, ∀i ̸= j. Thus

G ⊆ Z(fi)∪Z(fj) and in the other word, [G∩ (X \Z(fi))]∩ [G∩ (X \Z(fj))] = ∅,
∀i ∈ I. Therefore the collection {G∩ (X \Z(fi)) : i ∈ I} is a collection of mutually
disjoint nonempty open subsets of G. This means that c(G) ≥ GdimT−1C(X).
Now suppose that {Hi : i ∈ I} is a collection of disjoint nonempty open subsets of
G. For each i ∈ I, we define fi ∈ C(X) such that fi(X \Hi) = {0} and fi(xi) = 1
for some xi ∈ Hi (note that Hi is also open in X). Clearly fi /∈ OG = MG, i.e.,
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fi
1 ̸= 0, ∀i ∈ I. On the other hand fifj = 0 implies that fi

1
fj
1 = 0 and hence

the collection {( fi1 ) : i ∈ I} is an independent set of nonzero ideals of T−1C(X).
This shows that GdimT−1C(X) ≥ c(G), so GdimT−1C(X) = c(G). The second
equality c(G) = GdimC(G) is proved in [1].
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